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Abstract. Regular grid sampling structures in the plane are a common spatial
framework for many studies. Constructing grids with desirable properties such as
equality of area and shape is more difficult on a sphere. We studied the distortion
characteristics of recursive partitions of the surface of the globe starting with the
octahedron and icosahedron polyhedral models. We used five different methods
for mapping from the polyhedral model to the surface of the sphere: the Gnomonic
projection, Fuller’s Dymaxion projection, Snyder’s equal area polyhedral projec-
tion, direct spherical subdivision, and a recursive polyhedral projection. We
increased partition density using both a 4-fold and a 9-fold ratio at each level of
recursive subdivision by subdividing to the 8th level with the 4-fold density ratio
(65 536 cells per polyhedral face) and to the fifth level with the 9-fold density
ratio (59 049 cells per polyhedral face). We measured the area and perimeter of
each cell at each level of recursion for each method on each model using each
density ratio. From these basic measurements we calculated the range and stand-
ard deviation of the area measurement, and the mean, range, and standard
deviation of a compactness measurement defined as the ratio of (the ratio of the
perimeter to the area of the cell) to (the ratio of the perimeter to the area of a
spherical circle with the same area). We looked at these basic measurements and
their statistics using graphs of variation with recursion level, sums of squares
analyses of variation, histograms of the distributions, maps of the spatial variation,
and correlograms. The Snyder projection performed best in area distortion and
the Gnomonic projection performed best in compactness distortion. The Fuller
projection and the Sphere method had moderate distortion in both area and
compactness relative to the worst methods. There was little difference in distortion
performance between partitions using the 4-fold density ratio and those using the
9-fold density ratio. Partitions based on the icosahedron performed better for all
statistics than those based on the octahedron. '

1. Introduction

Global change studies often need an assumption-free method for partitioning the
earth or some subset of it into sampling or analysis units. Rather than adopting a
geographical framework based on political divisions, or on scientific criteria that
may be different from those of the study at hand, investigators often choose to
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impose a regular geometric grid that is unbiased with respect to patterns that
arbitrary natural processes or human institutions may have created.

For studies in small areas over which distortions due to the curvature of the
earth are negligible, it is easy to create such a grid by assuming that the study area
can be represented on a plane. On a sphere, or nearly spherical surface such as the
Earth, it is more difficult. We began investigating the construction of equal area
partitions of the globe in our earlier work (White et al. 1992). This work was based
on the truncated icosahedron positioned on the Earth to optimally cover the conter-
minous US in one hexagon face of the model projected to the sphere, followed by a
triangular grid of points with a corresponding tessellation of hexagons at different
densities developed upon the planar hexagon face. Weaknesses of the initial approach
included (1) the use of the Lambert equal area azimuthal projection that did not
project exactly from a hexagon face of the truncated icosahedron to the corresponding
spherical hexagon, leaving sliver areas along the edges, (2) the difficulty of extending
grid networks over the pentagon faces of the truncated icosahedron model, (3) a
mixed-factor hierarchy of grid densities that was designed to allow more choice in
sampling density but complicated the generation of custom grids, (4) a lack of
computer data structure or database management system, and (5) the bias in the
positioning of the grid to optimize for one country. To address some of these
weaknesses, we initiated a more comprehensive study of global grid systems and the
geometric distortions that they create.

In this paper, we present a systematic study of a class of global partitions based
on recursive subdivisions of the faces of the octahedron and icosahedron. Our
objectives were to compare the distortion performance of partitions along four
different dimensions of variation, or factors. The first factor was the initial geometric
model, either octahedron or icosahedron. The second factor was the method for
mapping the surface of the geometric model to the surface of the sphere. The third
factor was the change in density of the partition between levels of recursion. The
final factor was level of recursion, which corresponds to size of grid as measured by,
for example, number of cells.

2. Methods of partition

The framework for our study was the subdivision of the surface of the Earth
using regular polyhedra as initial models. These polyhedral-based partitions are only
one of several classes of methods for developing global grids (White et al. 1992). In
this study we investigated partitions based on the triangular faces of an octahedron
and an icosahedron. We selected the icosahedron because it is the highest order
regular three-dimensional polyhedron in number of faces. We hypothesized that this
model would therefore produce partitions with less distortion than those based on
the other regular polyhedra. We selected the octahedron as a model for comparison
for two reasons. First, several proposed global grid systems use the octahedron
(Dutton 1988, Goodchild and Yang 1992, Lugo and Clarke 1995, Dutton 1996).
Second, it is the next highest order regular polyhedron having triangular faces,
therefore it is straightforward to compare with the icosahedron. A different standard
of comparison would be necessary to compare the triangular faces of the icosahedron
with the pentagonal faces of the dodecahedron or the square faces of the hexahedron.

Within a triangular face of either the icosahedron or the octahedron, we imple-
mented a recursive partitioning process, using either a 4-fold or a 9-fold increase in
density of cells at each level of recursion (figure 1). These two methods of recursive
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Recursive Partition Geometry - 3 Levels
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Figure 1. Recursive partitioning of a triangular face of the icosahedron (or octahedron):
(@) using the 2-frequency subdivision of edges and the 4-fold density ratio; (b) using
the 3-frequency subdivision of edges and the 9-fold density ratio. The first three
recursion levels are shown.
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partitioning are sometimes called the 2-frequency and 3-frequency cases (Popko
1968) because the partitions are created by subdividing each edge of the triangle
into two or three equal segments, respectively, and connecting the nearest neighbour
segment endpoints to create the next level partition.

Each of the two density-changing methods has advantages. Although all analyses
in this paper were performed on the triangular cells of the partitions, for the purpose
of discussing the comparative advantages of the two density factors, we focus on the
hexagon tessellations induced by the 4-fold and 9-fold partitions (figure 2), since for
many applications the more compact shape of hexagons will be preferred as the cell
structure rather than that of the triangles. (In a related paper (Kimerling et al.
submitted), we performed similar analyses on hexagons as the unit of analysis with
qualitatively similar results.) In the 4-fold case, a hexagon tessellation to cover the
icosahedron can only be constructed by connecting the centers of the triangle
partition (figure 2 (a)). This is a so-called dual, or Voronoi, network corresponding
to the triangle tessellation. In successive levels of the 4-fold hexagon hierarchy, each
hexagon at a coarser level is composed of one whole and six half-hexagons from the
next finer level. This results in an offset structure whereby no hexagon remains
undivided over a minimum of two levels. This is a disadvantage in that aggregation
and disaggregation of data require modelling the values in hexagons, either by
smoothing or splitting, to change levels. On the other hand it is an advantage in
avoiding the potential systematic bias in placement of a strictly congruent structure,
such as a rectilinear quad-tree, that will divide an object located over cell intersections
through all hierarchical levels (Nievergelt 1989).

For the 9-fold case, we illustrate in figure 2 (b) the construction of a hexagon
tessellation by aggregation of triangles. (There is also a dual hexagon tessellation
which, when combined with the tessellations formed by aggregation of triangles,
creates a 3-fold hierarchy.) In successive levels of the 9-fold hexagon hierarchy each
hexagon at a coarser level is composed of seven whole hexagons and six third-
hexagons from the next lower level. This structure has the advantage of minimizing
aggregation and disaggregation data modelling. On the other hand it lacks the offset
property of the 4-fold hierarchy.

For either the 4-fold or 9-fold hierarchy, the hexagon tessellations over the entire
sphere are always interrupted by either twelve pentagons or six squares located at
the vertices of the icosahedron or octahedron, respectively, regardless of level in the
hierarchy.

The principal criterion for selecting methods of mapping the partition from the
geometric model to the surface of the sphere was the requirement that the method
provide a one-to-one correspondence between points on the model of development,
whether a plane, a polyhedron, or a sphere, and points on the surface of the sphere.
For a map projection method this criterion implied that the extent of the planar
triangle of the face of the geometric model be projected exactly to the corresponding
extent of the spherical triangle of the geometric model. Many map projections, for
example the Lambert equal area azimuthal, do not have this property (sce White
et al. 1992).

Using this criterion we implemented five methods of mapping the partition from
the geometric model to the surface of the sphere. The first three methods map from
the plane of an entire triangle of the geometric model to the sphere. The fourth
method forms the partition by directly subdividing the spherical surface. The fifth
method maps to the sphere from the vertices of successively higher order polyhedra
formed by the recursive partition.
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Figure 2. Hexagon tessellations resulting from recursive partitioning of a triangular face:

hierarchy. The first three recursion levels are shown.

(@) ‘dual’ hexagons from the 4-fold hierarchy; (b) ‘aggregate’ hexagons from the 9-fold
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For the first three methods, we created the partitions in the plane and then
projected the vertices to the sphere. The first of these methods was the Gnomonic
azimuthal projection; the second was the Fuller Dymaxion projection (Fuller 1982,
Gray 1994, 1995); and the third was the Snyder equal area polyhedral projection
(Snyder 1992). The Gnomonic projection has the property that all straight lines in
the plane correspond to great circle arcs on the sphere. Therefore we represented
the edges of the partition cells on the surface of the sphere for this projection as
great circle arcs. Since neither the Fuller nor the Snyder projection has this property,
we used an approximation method to compute the edges on the sphere. At any level
of recursion we projected not only the vertices of the triangle cells but also points
along each edge computed in the plane from a 2(¢recussion level) oyyhdivision of the
edge. We calculated that this level of resolution of representation of the edges was
sufficiently precise to compute our response variables to a precision of at least four
significant digits for the highest level of recursion and at least six significant digits
for all other levels.

The fourth method was to create the partition directly on the surface of the
sphere. In this case, we used the same recursive rules with either the 4-fold or 9-fold
increase in density. We started with the spherical triangle corresponding to a face of
either the icosahedron or octahedron. This triangle’s vertices are identical to those
of the inscribed polyhedron and its edges are great circle arcs connecting these
vertices. Then we bisected or trisected these edges (figure 3) depending on the change
in density, as in the planar cases, and connected the nearest neighbour vertices with
great circle arcs.

The final method was the polyhedral partition. In this method, the mapping from
plane to sphere changed at each level of recursion. Each new vertex created by
bisecting or trisecting an edge of a triangle was mapped to the surface of the sphere
with the Gnomonic projection. This process was repeated recursively (figure 4). The
edges of the cells of this partition on the sphere were then great circle arcs, since the
Gnomonic projection always preserves the relation between lines in the plane and
great circle arcs. For the 4-fold change in density, this method is equivalent to the
direct spherical partition (figure 5).

We expected, of course, that the Snyder method would perform best in area
distortion, by definition. Other expectations were that the Gnomonic mapping
method would perform poorly, at least in area distortion, and that the Snyder
method would likely sacrifice poor performance in shape distortion in achieving
equal area.

We implemented the methods of partition for approximately four orders of
magnitude difference in size of cells. For the 4-fold density ratio, we used recursion
levels one through eight, and for the 9-fold density ratio, levels one through five
(table 1). ‘

3. Measures of performance

Analysis of distortion on map projections is commonly based on Tissot’s theorem,
leading to the concepts of scale, area, and angular distortion at a point on a projection
(Robinson et al. 1995, Chapter 5, pp. 60-90). Angular distortion is sometimes used
as a measure for shape distortion, but more explicit measures have also been
developed ( Kimerling et al. 1995). For our work, we chose to compute distortion
measures based on properties of the cells of the recursive partitions as mapped to
the sphere from the geometric model, either octahedron or icosahedron.




Comparing area and shape distortion on global partitions 811

Sphere Partition Mapping Method
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Figure 3. The Sphere method for projecting from the geometric model to the sphere. Starting
with the initial model (icosahedron or octahedron) projected to the sphere, the spherical
triangle is partitioned, using either the 4-fold or 9-fold density ratio, by either bisecting
or trisecting each edge and connecting the new vertices with great circle arcs. In (a)
the initial spherical triangular face is shown; in (b) the first level of the 9-fold partition
is created by trisecting the edges and connecting nearest neighbour vertices.

We compared the performance of two general properties of the different methods
of partition: area and shape distortion. For each general property we used several
different measures. In order to make comparisons easier to interpret we used stand-
ardized measures. In each case of our analysis we started with a set of partition cells
on the sphere, generated from one of the two geometric models, one of the two
density ratios, one of the five methods for mapping the model to the sphere, and
one of the eight or five levels of recursion, depending on density ratio.

The two direct measurements on partition cells that we used were the perimeter
and area. The perimeter was calculated as the sum of great circle arc distances
around the cell, including additional arcs introduced for the Fuller and Snyder
projections to more accurately represent the boundary as mapped from the planar
partition. The area of partition cells was calculated by Kimerling’s (1984) formula
for the spherical case.

For area measurements, we converted the actual areas to standardized areas for
each level of recursion by dividing the actual areas by the values listed in table 1 to
obtain areas relative to a unit value of 1.0. Since the Snyder projection is equal area,
all area values at all levels are exactly equal to 1.0. No other mapping method had
this property. One advantage of the standardization to. unit areas is that measures
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Polyhedral Partition Mapping Method
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Figure 4. The Polyhedra method for projecting from the geometric model to the sphere.
Starting with the initial model (icosahedron or octahedron) a face is successively
subdivided, using either the 4-fold or 9-fold density ratio, to create successively higher
order polyhedra using a Gnomonic projection of the edge bisection or trisection
vertices to the surface of the sphere. In (a) the initial triangular face is shown with the
corresponding spherical triangle determined by the vertices; in (b) the first level of the
9-fold partition is created in the plane of the face and each vertex is projected to the
spherical triangle; in (c) the next level of polyhedron is created by connecting
the projected vertices with chords. The first level polyhedron for the icosahedron has
180 faces (20 x 9).

of variation such as range and standard deviation are then relative to a standard
unit and thus more directly comparable.

For shape measurements, we used a standardized perimeter to area ratio and
called this ‘compactness’. We defined this measure conceptually, for any cell, as the
ratio of its perimeter to its area standardized by dividing this ratio by the highest
value of compactness obtainable, that is, by the perimeter to area ratio of a spherical
zone, bounded by a small circle, having the same area as the triangular cell. By a
spherical zone we mean an area on the sphere contained within a spherical small
circle. Computationally, this measure reduces to sqrt(4na—a?/r?)/p, where a is the
cell area, p is the cell perimeter, and r is the radius of the sphere. The resulting values
were then dimensionless numbers between 0 and 1.

We used five statistics of these two general types of measurements: range of area,
standard deviation of area, range of compactness, standard deviation of compactness,
and mean compactness. (Mean of area, as standardized, was always 1.0). Each
statistic was computed for the population of all cells for each combination of a
geometric model, mapping method, density ratio, and level of recursion, giving a
total of (2 x5x8=80, for 4-fold)+(2x 5 x 5=50, for 9-fold)=130 values of each
statistic. (The Sphere and Polyhedra mapping methods are identical for the 4-fold
density case.) Our analysis design is displayed in table 2 with the names that we will
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Comparing Sphere and Polyhedra Methods
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Figure 5. Comparison of the Sphere and Polyhedra mapping methods for one edge of one
face: (a) for the 4-fold density ratio, the methods are identical; (b) for the 9-fold density
ratio, the Sphere method creates equal arc lengths but the Polyhedra method projects
the vertices of equal segment lengths on the edge to unequal arc lengths on the sphere.

use in subsequent discussion for the different components for each response measure
and for each factor contributing to the response.
With these measurements we conducted sums of squares analyses to examine
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Table 1. Partition characteristics for successive levels of recursion on a single face of the
spherical octahedron and icosahedron. Areas are in square kilometers for an equal-
area partition from a sphere with radius of 6370.9972 kilometre.

Area per cell

Level Number of cells Octahedron Icosahedron

(a) 4-fold

1 4 15939502.5 6375801.0
2 16 3984875.6 1593950.2
3 64 996218.9 398487.6
4 256 249054.7 99621.9
5 1024 62263.7 24905.5
6 4096 15565.9 6226.4
7 16384 3891.5 1556.6
8 65536 972.9 389.1
(b) 9-fold

1 9 7084223.3 2833689.3
2 81 787135.9 314854.4
3 729 87459.5 34983.8
4 6561 9717.7 3887.1
5 59049 1079.7 431.9

Table 2. Components of the analysis design. Each response measure was computed for each
combination of geometric model, mapping method, density ratio, and recursion level.
Note that recursion levels 1-8 only apply to the 4-fold density ratio and recursion
levels 1-5 only apply to the 9-fold density ratio.

Measures of Geometric Mapping

response models methods Density ratios  Recursion levels
Area range Octahedron  Gnomonic 4-fold 1-8

Area std. dev. Icosahedron  Fuller 9-fold 1-5
Compactness range Snyder

Compactness std. dev. Sphere

Compactness mean Polyhedra

components of variation, for which we further standardized the data. Sums of squares
partitions of variation are computed using standard analysis of variance techniques
in order to give a quantitative, relative comparision of the importance of individual
factors and their interactions. Interpretation is based on the ratio of the mean square
of effects (factors and their interactions) to mean square of residuals. To create
comparable data for these analyses, we chose to standardize at one level of resolution
as measured by mean size of partition cell. For this purpose, we selected the smallest
cell size that made possible the estimation of the values of the statistics for all other
cases (other combinations of geometric model and density ratio) by linearly interpol-
ating between two adjacent values. Therefore we used recursion level 5 for the
octahedron 9-fold density ratio with a cell size slightly greater than 1000 square
kilometres (see table 1). We selected the smallest cell size that met the interpolation
criterion both because the values in a recursion sequence tend toward an asymptote
as the mean cell size decreases and because we expect most applications to use cell
sizes at the smaller end of those we studied.
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We also investigated the distribution of values and the spatial pattern of distor-
tion, both in area and compactness, for combinations of mapping method and density
ratio. In addition to histograms showing the distributions of values, we prepared
maps representing, in the plane, the variation across a triangle of the icosahedron
of both area and compactness values (see Clarke and Mulcahy 1995 for an alternative
distortion mapping method). For these maps we used level 5 of the 4-fold density
ratio and level 3 of the 9-fold density ratio. Rather than equal interval classes for
these maps, we used quantiles to emphasize spatial pattern. We also computed and
graphed correlograms showing the value of the autocorrelation of area and com-
pactness measures as a function of distance separating cells. We used the same
recursion levels for the correlograms as we did for the distortion maps. The units of
distance on the correlograms are units of cell centre-to-centre distance. In this
coordinate system, the length of a side of a 4-fold, level 5, base triangle is about 55
units and the distance from centre to vertex is about 33 units; for a 9-fold, level 3,
base triangle, the side length is about 46 units and centre to vertex is about 27 units.
We computed the correlograms for distances of 40 and 30 units, respectively, for the
4-fold, level 5, and the 9-fold, level 3 partitions.

4. Results

First we examined the performance of mapping methods by level of resolution
for each of the five response measures (figure 6). Since the pattern of differences
between methods as resolution was increased (cell size was decreased) was essentially
identical for both geometrical models and for both density factors, we focus on the
icosahedron 9-fold results.

Differences in range of area distortion illustrated a clear distinction among
mapping methods as resolution was increased (figure 6(a)). Differences were less
pronounced for the first level partition, but rapidly approached an asymptotic
behaviour with the methods stabilizing at different levels of area range. The
Gnomonic projection had approximately twice the range of area distortion (about
60% of the mean area) as that of the next largest, the Polyhedra method, followed
in descending order by Sphere, Fuller, and Snyder. The Snyder projection had an
area range of zero, of course, since it is an equal area mapping method. Standard
deviation in area distortion (figure 6(b)) had the same order of performance in
mapping method as did area range, with Gnomonic the highest and Snyder the
lowest. (For the octahedron, although the differences between methods were similar,
the maximum area range and the maximum standard deviation were more than
twice as large as those for the icosahedron, being over 120% and 30%, respectively,
both for the Gnomonic projection.)

For the compactness measures, the results were reversed with Snyder the highest
both in range and standard deviation (figures 6(c) and 6(d)). Compared to Snyder
the other methods were indistinguishable in range of compactness distortion
(figure 6(c)). The Snyder performance apparently stabilized at a value much greater
than any of the others. For the standard deviation of compactness distortion, how-
ever, the maximum values were at the first level of recursion (largest cell size) and
then decreased in further levels of recursion for all methods. The Snyder performance
was still distinctly greater than the others but may not have reached a minimum by
level 5 of the 9-fold density ratio. The notable behaviour of the Snyder projection
in stabilizing at a large compactness range but continuing to decrease in compactness
standard deviation with increasing resolution can be partially understood by the
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Response by Mapping Method and Recursion Level
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Figure 6. Graphs of the five statistics of the area and compactness response measurements
shown for each mapping method as a sequence by recursion level. These results are
for the icosahedron using the 9-fold density ratio.

maps of compactness values across a triangle of the icosahedron, to be discussed
later. (For the octahedron, the maximum compactness variation measures were also
more than twice as large as those for the icosahedron.)

Higher values of mean of compactness were closer to the most compact shape
possible, and thus were preferred. The results of experiments for this measure were
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somewhat surprising in that the Gnomonic projection had the best performance
(highest values) and therefore, on average, the most compact cells. However, differ-
ences between methods were in the third decimal place indicating that for many
applications the methods were not usefully distinguished. Also, none of the asymp-
totic values were greater than 78% of the most compact value possible, that of a
spherical circle of the same area. (For the octahedron, the best performing method
for mean of compactness was worse than the worst for the icosahedron, but differences
between methods were also in the third decimal place.) The highest values for mean
of compactness were at the first level partition for all methods; this result is under-
standable as the consequence of changing from a more rounded spherical triangle
to a more nearly planar triangle as resolution increased.

The sums of squares analyses of variation sharpened our knowledge of the
importance of different factors. By standardizing to the octahedron 9-fold density
level 5, we developed a set of 20 values for each response measure, consisting of 5
methods times 2 models times 2 density factors (figure 7). For the Gnomonic and
Fuller projections there was no apparent difference between density factors in any
of the measures. The contrasting performance of the Snyder projection between area
and compactness measures was also evident in figure 7, performing best in area but
worst in compactness, except for compactness standard deviation in which the
Polyhedra method was worst. Where there was a difference in density factor, the 9-
fold values were consistently lower than the 4-fold, except for compactness standard
deviation.

Another view of these results is a factor plot (figure 8), analogous to those used
for analysis of variance (Chambers et al. 1992). These plots for each response measure
show the means for the factors of geometric model, mapping method, and density
ratio. The first indication of factor importance was that for the responses of area
range, area standard deviation, and compactness range, mapping method accounted
for more variation than geometric model, but that for the responses of compactness
standard deviation and compactness mean, the results were reversed. In all cases
variability due to density ratio was much less than that from the other two factors.
This comparison of variation did not account for possible interactions between the
factors. We investigated this with sums of squares analyses of variation.

We discuss in detail the sums of squares partition of variation in the area range
response (table 3); analyses of the other response measures had similar results.
Considering the main effects only (table 3(a)), the ratios of the mean square of the
geometric model effect and the mapping method effect to the residual mean square
were very high, but the corresponding ratio for the density ratio effect was over an
order of magnitude lower. This confirmed the interpretation from the factor plot of
this response (figure 8(a)). When we included all two-way interactions in the analysis
(table 3(b)), the mean square ratio for the density ratio effect was higher than in the
main-effects only analysis, but still over an order of magnitude less than either of
the other main effects. The mean square of the effect of the interaction between
geometric model and mapping method was about 14 times that of the residual mean
square and this ratio was higher than that of the density ratio, suggesting some
importance for this effect. This value was still about seven times lower than that of
the lower value of the two factor effects themselves, however, implying that the
interaction effect was substantially weaker than the main effects of these two factors.
The other two interaction effects had even lower mean square ratios.

The histograms of the distributions of the area and compactness values for each
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Standardized Response
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Figure 7. A row-labelled plot (Carr 1994) of the five statistics of the area and compactness
response measurements as standardized for sums of squares analyses. These are shown
for each geometric model, each mapping method, and each density ratio.

method (figure 9) showed distinct differences. The Snyder projection histogram for
area (for the 4-fold density ratio) had only one bar for the single equal area value,
but the histogram for the Snyder compactness values (for 4-fold) also had a surprising
centrality of value. As figure 6(c) showed, however, the extreme values for the Snyder,
though few in number, were substantially greater than for other methods. The
Gnomonic and Fuller methods had continuous, unimodal histograms, while Sphere
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Response by Means of Factors
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Figure 8. | Graphs of the five statistics of the area and compactness response measurements,
summarized by their means for the three factors of interest: geometric model, mapping
method, and density ratio. For each of the five statistics, the geometric model values
are the means of 10 standardized values (five mapping methods times two density
ratios); mapping method values are the means of 4 standardized values (two geometric
models times two density ratios); and density ratio values are the means of 10 standard-
ized values (two geometric models times five mapping methods).

and Polyhedra had multimodal, discontinuous ones. Histograms of Gnomonic,
Fuller, and Snyder for the 9-fold density ratio were essentially the same as the
corresponding histograms for the 4-fold density ratio.

The maps of the spatial variation in the area and compactness values had




820 D. White et al.

Table 3. Sums of squares analyses of variation results for area range response. The results
are for two analyses: with and without two factor interactions. (Mean square ratios
were computed with double [ ~ 14 digit] precision but rounded to one decimal place.)

Degrees freedom  Sum of squares Mean square Mean square ratio

(a) Area range with main effects only

Model 1 0.805 0.805 28.5
Method 4 1.976 0.494 17.5
Density 1 0.030 0.030 1.1
Residuals 13 0.368 0.028

(b) Area range with two-way interactions

Model 1 0.805 0.805 159.7
Method 4 1.976 0.494 98.0
Density 1 0.030 0.030 59
Model: method 4 0.283 0.071 14.0
Model: density 1 0.013 0.013 2.6
Method: density 4 0.052 0.013 2.6
Residuals 4 0.020 0.005

fascinating patterns (figures 10-12). For the 4-fold density ratio, spatial variation in
area (figure 10) had one of three patterns. The Snyder projection was homogeneous,
being equal area. The Gnomonic and Fuller projections created partitions with a
decrease in area per cell radially from the centre. The Sphere method created a
pattern with an apparent fractal pattern. In compactness (figure 11), each method
" had a unique pattern of spatial variation. The Gnomonic had a general gradient of
decrease in compactness per cell radially, as for the area measure, but with a more
prominent 3-way symmetry. The Fuller pattern was dominated by abrupt change in
first order neighbours. The Sphere pattern had a general gradient of decrease as
with the Gnonomic, however the pattern followed the recursive block structure
more closely.

The pattern of variation in compactness for Snyder had a strong 3-way symmetry
about the angle bisectors along which the extreme values of Snyder lay. The evidence
of this map, the Snyder compactness graph in figure 6, and the Snyder compactness
histogram in figure 9, all helped in understanding the particular behaviour of this
method. The mathematics of the projection constructed the equal area property
across the full spherical triangle by distorting shape along the bisectors (Snyder
‘1992). Thus the map showed the extreme values located on the bisectors; the
histogram displayed the large majority of values close to the mean with a small
number of outliers (which were the values along the bisectors); and the graphs of
standard deviation and range of compactness contrasted because the range contained
the extreme values while the standard deviation gradually diminished as the number
of cells along the bisectors became a smaller proportion of the total number of cells
with increasing resolution of partition.

For the 9-fold density ratio, the Gnomonic, Fuller, and Snyder projections had
patterns of area and compactness variation very similar to those for the 4-fold ratio.
The patterns for Sphere and Polyhedra, however, were different (figure 12). Although
each of these four patterns had the smallest values at the vertices and larger values
toward the centre, the patterns had different, symmetric, and highly structured
organization.

In a further examination of spatial structure with correlograms (figure 13), some
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Histograms of Area and Compactness Measures
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Figure 9. Histograms of the distributions of area and compactness measurements for different
mapping methods and density ratios. These values are for the icosahedron partitions.
- Some combinations of mapping method and density ratio are not shown since they

have similar patterns.

aspects of the mapped variation were confirmed. By definition, constant values yield
1 autocorrelation values of zero, accounting for the Snyder area measure correlogram.
| The large alternation in values between adjacent cells in the compactness measure
1 for Fuller was confirmed by the sawtooth shape of the autocorrelation function. The
high negative autocorrelation of neighboring values along the angle bisectors of the
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Maps of Area by Method (4-fold, Level 5)
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Figure 10. Maps of the spatial variation of area measurements for the Gnomonic, Fuller,
Snyder, and Sphere mapping methods for the 4-fold density ratio.

compactness map for Snyder appeared in the negative first-lag autocorrelation value,
in which these values along the angle bisectors were only partially offset by positive
values in other parts of the map. The other correlograms had a common pattern of
generally declining autocorrelation with distance. The Sphere and Polyhedra correlo-
grams for both area and compactness had minor secondary peaks of increased values
at distances of about 30 centre-to-centre distances for the 4-fold, level 5 partition
and about 20 centre-to-centre distances for the 9-fold, level 3 partition.

5. Discussion
We have presented several complementary views of the distortion performance
of different methods of partitioning the triangular faces of the icosahedron and
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Maps of Compactness by Method (4-fold, Level 5)
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Figure 11. Maps of the spatial variation of compactness measurements for the Gnomonic,
Fuller, Snyder, and Sphere mapping methods for the 4-fold density ratio.

octahedron (figures 6—13, table 3). These views taken together provided tools for
evaluating the alternatives. Of the methods we analysed, only the Snyder projection
had the equal area property. For applications that require this property, our analyses
demonstrated the cost in considerable shape distortion compared to other methods.
For applications that could confine their study area to between the angle bisectors,
the cost would not be great. However, these applications are not the most likely to
use a global system.

If exact equal area is not required, other factors may be considered. The best
performance in shape distortion, both in variability and in mean value, appeared to
be from the Gnomonic projection (figures 6 and 7). We conjecture that this is because
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Area and Compactness by Method (9-fold, Level 3)
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Figure 12. Maps of the spatial variation of area and compactness measurements for the
Sphere and Polyhedra mapping methods for the 9-fold density ratio.

the cell edges are always great circle arcs, minimizing shape deviations due to edge
curvature. Another criterion for judging performance could be balance between area
and shape distortion, under which Fuller or Sphere could be candidates. For distin-
guishing between these two mapping methods, the histograms and maps provide the
best evidence. Fuller had a generally smoother distribution of values in both area
and compactness whereas Sphere had multi-modal distributions and highly struc-
tured spatial variability.

The contrast between the 4-fold and 9-fold density ratios was not an important
factor in distortion performance as indicated by the factor plots (figure 8) and the
sums of squares analyses (table 3). Choosing between these may be better determined
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Correlograms of Area and Compactness Measures
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Figure 13. Correlograms of the area and compactness measurements for different mapping
methods and density ratios. These values are for the icosahedron partitions. Some
combinations of mapping method and density ratio are not shown since they have
similar patterns.

by other criteria, for example, scaling considerations or data structure development.
The 4-fold ratio provides a finer scale gradient than the 9-fold for choosing cell size;
however, the 9-fold can be augmented to form a 3-fold density ratio system, con-
sequently having finer gradations than the 4-fold. The 4-fold system could adopt the
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data structure technology of quad-trees (Fekete and Treinish 1990, Lugo and Clarke
1995); however, 9-fold or 3-fold hierarchies could be constructed analogously with
ternary or non-anary trees. One other criterion is object integrity over changes in
recursion level; we discussed this under advantages for each density ratio.

Our results showed clear differences, as expected, between using the icosahedron
or octahedron as an initial geometric model. In every measure of performance the
icosahedron scored better than the octahedron. Preference for the octahedron there-
fore would have to rely on other criteria. One of these could be ease of orientation,
since the octants can be aligned with major divisions in the graticule (Gasson 1983).
Another might be minimizing singularities (six vertices rather than twelve).

This analysis investigated the distortion characteristics of the triangular cells of
recursive partitions. We have also compared in a more recent study (Kimerling et al.
1997) distortion on hexagon cells for the Snyder and Fuller methods with results
that are qualitatively similar to those in this study.

The factorial design of our analysis and the complementary statistical and
graphical tools allowed for comparisons between alternative methods of constructing
spherical tessellations. We have looked at a subset of the many possible types of
these tessellations and used only two general types of performance measurements.
For example, minimizing distortion may not be the only goal of a global grid
partition system. Other relevant goals could include ease of constructing neighbour-
hoods of cells, ease of navigating along routes, and ease of performing other analytical
tasks such as cartographic generalization. We also did not examine the placement
or orientation of polyhedral models with respect to fixed points on the earth in order
to minimize distortion for land areas, for example. Future analyses could include
tessellations based on whole-earth map projections, for example, rather than only
polyhedral systems, and could include other measurements of performance such as
variability in centre point distances and the computational complexity of retrieval
and calculation tasks using the partition structure.
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